Harmonic univalent functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Univalent Harmonic Functions

Two classes of univalent harmonic functions on unit disc satisfying the conditions ∑∞ n=2(n−α)(|an|+|bn|) ≤ (1−α)(1−|b1|) and ∑∞ n=2 n(n−α)(|an|+|bn|) ≤ (1−α)(1−|b1|) are given. That the ranges of the functions belonging to these two classes are starlike and convex, respectively. Sharp coefficient relations and distortion theorems are given for these functions. Furthermore results concerning th...

متن کامل

Univalent Harmonic Functions

A necessary and sufficient coefficient is given for functions in a class of complexvalued harmonic univalent functions using the Dziok-Srivastava operator. Distortion bounds, extreme points, an integral operator, and a neighborhood of such functions are considered.

متن کامل

Stability for certain subclasses of harmonic univalent functions

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.

متن کامل

A certain convolution approach for subclasses of univalent harmonic functions

In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.  

متن کامل

Convolution of Salagean-type Harmonic Univalent Functions

A recent result of Yalcin [9] appeared in Applied Mathematics Letters (2005), concerning the convolution of two harmonic univalent functions in class SH(m,n, α) is improved. AMS (MOS) Subject Classification Codes: 30C45

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica

سال: 1984

ISSN: 0066-1953

DOI: 10.5186/aasfm.1984.0905